Minimization Principles for the Linear Response Eigenvalue Problem I: Theory

نویسندگان

  • Zhaojun Bai
  • Ren-Cang Li
چکیده

We present two theoretical results for the linear response eigenvalue problem. The first result is a minimization principle for the sum of the smallest eigenvalues with the positive sign. The second result is Cauchy-like interlacing inequalities. Although the linear response eigenvalue problem is a nonsymmetric eigenvalue problem, these results mirror the well-known trace minimization principle and Cauchy’s interlacing inequalities for the symmetric eigenvalue problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEW APPROACH TO THE SOLUTION OF SENSITIVITY MINIMIZATION IN LINEAR STATE FEEDBACK CONTROL

In this paper, it is shown that by exploiting the explicit parametric state feedback solution, it is feasible to obtain the ultimate solution to minimum sensitivity problem. A numerical algorithm for construction of a robust state feedback in eigenvalue assignment problem for a controllable linear system is presented. By using a generalized parametric vector companion form, the problem of eigen...

متن کامل

Minimization Principles for the Linear Response Eigenvalue Problem III: General Case

Previously a minimization principle for the sum of the first few smallest eigenvalues with the positive sign and Cauchy-like interlacing inequalities for the standard linear response eigenvalue problem for the 2n×2n matrix [ 0 K M 0 ] were obtained by the authors, where K and M are n×n real symmetric positive semi-definite matrices and one of them is definite. In this paper, a more general line...

متن کامل

Minimization principles and computation for the generalized linear response eigenvalue problem

The minimization principle and Cauchy-like interlacing inequalities for the generalized linear response eigenvalue problem are presented. Based on these theoretical results, the best approximations through structure-preserving subspace projection and a locally optimal block conjugate gradient-like algorithm for simultaneously computing the first few smallest eigenvalues with the positive sign a...

متن کامل

Minimization Principles for the Linear Response Eigenvalue Problem II: Computation

In Part I of this paper we presented a minimization principle and related theoretical results for the linear response eigenvalue problem. Here we develop best approximations of the smallest few positive eigenvalues via a structure-preserving subspace projection. Then we present a four-dimensional subspace search conjugate gradient-like algorithm for simultaneously computing these eigenvalues an...

متن کامل

Elliptic and hyperbolic quadratic eigenvalue problems and associated distance problems

Two important classes of quadratic eigenvalue problems are composed of elliptic and hyperbolic problems. In [Linear Algebra Appl., 351–352 (2002) 455], the distance to the nearest non-hyperbolic or non-elliptic quadratic eigenvalue problem is obtained using a global minimization problem. This paper proposes explicit formulas to compute these distances and the optimal perturbations. The problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012